

Certified Reference Material Reference material certificate

Arsenic(V) Standard for ICP

TraceCERT®

Product no.: 76686 **Lot no.:** BCCN6073

Description of CRM: Arsenic pentoxide (high-purity quality) in high-purity water (18.2 M Ω ·cm, 0.22

μm filtered).

Expiry date: JUL 2029 (unopened bottle in aluminized bag)

Storage: Store at 5°C-25°C

Density at 20°C: 999.5 kg m⁻³ ± 0.5 kg m⁻³ (k = 2)

Constituent	Certified values at 20°C and expanded uncertainties, $U = k \cdot u$ ($k = 2$) [1][2]										
Arsenic(V)	996 mg kg ⁻¹	±	3 mg kg ⁻¹	995	mg L ⁻¹	±	3	mg L ⁻¹			

Metrological traceability: Directly traceable to NIST SRM 3103a. [3]

Measurement method: The certified value is established by inductively coupled plasma optical emission

spectrometry ICP-OES in accordance with ISO/IEC 17025.[4]

Intended use: Specific determination of As (V)-ion concentration with ICP-spectrometry (after

separation), ion chromatography, spectrophotometry or any other analytical

technique.

Instructions for handling

and correct use:

The bottle's temperature must be 20°C. Shake well before every use. If storage of a partially used bottle is necessary (at the user's risk), the cap should be tightly sealed and the bottle should be stored at reduced temperature (e.g.

refrigerator) to minimize transpiration rate.

Health and safety

information:

Please refer to the Safety Data Sheet for detailed information about the nature

of any hazard and appropriate precautions to be taken.

Packaging: 100 mL HDPE bottle sealed with an aluminized bag

Accreditation: Sigma-Aldrich Production GmbH is accredited by the Swiss Accreditation Service

SAS as reference material producer under no. SRMS 0001 in accordance with

international standard ISO 17034^[5]

Certificate issue date: 18 SEP 2025

Dr. P. Zell – Approving Officer (Quality Assurance)

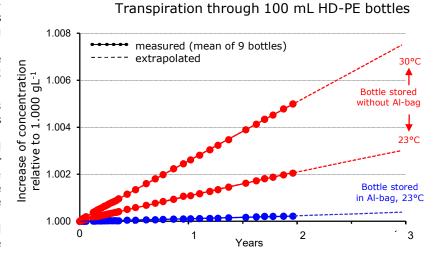
Certification process details:

The certified value of the content (mg/kg) is determined using high-performance inductively coupled plasma optical emission spectrometry (HP-ICP-OES). To obtain performance comparable to isotope dilution and classical methods (titration and gravimetric analysis) the HP-ICP-OES measurement is performed using an internal standard and a drift correction procedure. [6]

The mean value is based on 20 measurements (two samples and 10 measurements per sample). All measurements are traced gravimetrically to an internationally accepted reference material e.g. from NIST (USA) or BAM (Germany).

The certified arsenic (V) mass fraction is calculated from total arsenic minus measured arsenic (III). When the arsenic (III) mass fraction is below detection limit only an additional uncertainty contribution is added.

The two arsenic species were separated by suitable chromatography method and then measured with ICPMS. Heightening experiments were conducted to verify the recovery rate and the reliability of the method.

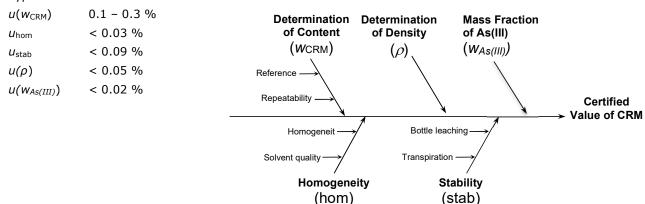

Homogeneity assessment:

Due to the production process, a homogeneous solution derives. Nevertheless a small homogeneity contribution is included into the calculation of content uncertainty of this CRM.

Stability assessment:

The storage behavior of standard solutions is of greatest importance with regard to the certified value. Therefore the two most important effects were investigated by in-depth studies in a cooperation with EMPA, St. Gallen:

- 1. The leachate from HDPE (high-density polyethylene) bottles was analyzed by HR-ICP-MS after leaching the bottles with $2\,\%$ nitric acid. Maximum contamination levels were found in the ng L^{-1} level for 12 elements.
- 2. To avoid significant loss of mass through transpiration the bottle is delivered in aluminum coated bags. After the bottle has been removed from the bag, transpiration will occur at an accelerated rate (see figure). We highly recommend not opening the bag until the solution is needed. Once the bottle is opened the solution at should stored reduced be temperature (4°C) reduce to transpiration.


Density Measurement:

The density measurement is carried out in accordance with ISO/IEC 17025^[4] and ISO 15212-1 ^[7] using the digital density meter DMA 4500M from Anton Paar with an oscillating U-tube installed. The measurement uncertainty is calculated according to Eurachem/CITAC Guide and reported as combined expanded uncertainty at the 95% confidence level, using a coverage factor of k = 2.

Uncertainty evaluation:

The uncertainty contributions are illustrated by the following cause-effect diagram:

Typical relative contributions are:

The combined standard uncertainty is calculated by combination of the standard uncertainties of the input estimates according to Eurachem/CITAC Guide "Quantifying Uncertainty in Analytical Measurement" and ISO 17034. [2][5]

Expanded uncertainty is then calculated to a confidence level of 95%, typically by multiplying with a coverage factor of k=2.

Trace Impurities:

The arsenic (III) ion species is determined in the bottled solution:

Arsenic (III) $< 0.2 \text{ mg kg}^{-1}$

Up to 75 trace impurities were analyzed by ICP-OES, ICP-MS and AAS. Some of the impurities are determined in the starting material and calculated for the solution (e.g. for rare earth elements contamination during the preparation is rendered impossible). Other elements are determined both in the starting material as well as in the bottled solution.

All values listed below are given in mg kg^{-1} (ppm), <X = below detection limit, m = matrix, n.a. = not analyzed

Li	Ве											В	С	N	0	F	Ne
<0.001	<0.001											<0.002	n.a.	n.a.	n.a.	n.a.	n.a.
Na	Mg											Al	Si	Р	S	CI	Ar
<0.001	0.004											<0.001	<0.010	<0.010	<0.010	n.a.	n.a.
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
<0.002	0.004	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	m	<0.002	n.a.	n.a.
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	- 1	Xe
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	n.a.	<0.001	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	n.a.	n.a.
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	n.a.	n.a.	n.a.
Fr	Ra	Ac															
n.a.	n.a.	n.a.		Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				<0.001	<0.001	<0.001	n.a.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
				Th	Pa	U											
				<0.001	n.a.	<0.001											

Product no.: 76686 Lot no.: BCCN6073

References:

- [1] ISO Guide 35:2017, "Reference materials Guidance for characterization and assessment of homogeneity and stability"
- [2] Eurachem/CITAC Guide, 3rd Ed. (2012), "Quantifying uncertainty in analytical measurement"
- [3] Eurachem/CITAC Guide, 2nd Ed. (2019), "Metrological Traceability in chemical measurement"
- [4] The accredited testing laboratory STS 0490 performs the measurements and weighing steps for the certification of this CRM under ISO/IEC 17025:2017, "General requirements for the competence of testing and calibration laboratories"
- [5] ISO 17034:2016, "General requirements for the competence of reference material producers"
- [6] Marc L. Salit et al., Anal. Chem. 2001, 73, 4821-4829, "Single-Element Solution Comparisons with a High-Performance Inductively Coupled Plasma Optical Emission Spectrometric Method"
- [7] DIN EN ISO 15212-1:1998, Oscillation-type density meters Part 1: Laboratory instruments

Certificate of analysis revision history:

Certificate version	Certificate issue date	Reason for version			
01	18 SEP 2025	Initial version			

The most recent version of the Certificate is available online (www.sigmaaldrich.com).

Disclaimer:

The purchaser must determine the suitability of this product for its particular use. Sigma-Aldrich Production GmbH makes no warranty of any kind, express or implied, other than its products meet all quality control standards set by Sigma-Aldrich Production GmbH. We do not guarantee that the product can be used for a special application.

